Chemoselective cross-metathesis reaction between electron-deficient 1,3-dienes and olefins

Laurent Ferrié, Dominique Amans, Sébastien Reymond, Véronique Bellosta, Patrice Capdevielle, Janine Cossy *
Laboratoire de Chimie Organique associé au CNRS ESPCI, 10 rue Vauquelin, 75231 Paris Cedex 05, France

Received 7 July 2006; received in revised form 14 September 2006; accepted 14 September 2006
Available online 20 September 2006

Abstract

Chemoselective cross-metathesis reactions between methyl sorbate or 1,3 -dienic amides and various olefins in the presence of the Grubbs-Hoveyda catalyst have been investigated. Cross-metathesis reactions turned out to be more chemoselective with 1,3-dienic amides than with 1,3 -dienic esters. © 2006 Elsevier B.V. All rights reserved.

Keywords: Cross-metathesis; Methyl sorbate; Dienic amides

1. Introduction

In the last decade, metal-catalyzed olefin metathesis has emerged as one of the most powerful and reliable organometallic transformations for carbon-carbon bond formation in organic synthesis [1], and particularly, ring-closing metathesis (RCM) and cross-metathesis (CM) [2] reactions have been thoroughly investigated. These convenient synthetic techniques have recently gained prominence due to the commercial availability of molybdenum catalyst [Mo]-I [3] and robust ruthenium carbene complexes such as $[\mathrm{Ru}]$-I [4], [Ru$]-$ II [5], and [Ru]-III [6], which exhibit good activities, operational simplicity, and remarkable functional group tolerance (Fig. 1). Therefore, the metathesis has become a powerful synthetic tool that has been widely used in the synthesis of natural products [7].

Although the RCM between 1,3-dienes and olefins has been used to synthesize complex naturally occurring molecules [8], CM reactions involving conjugated 1,3-dienes have been scarcely investigated [9]. Only recently, CM reac-

[^0]tions have been described between conjugated electrondeficient olefins such as ethyl sorbate and various olefin cross-partners [10]. When ethyl sorbate (1) and 5-hexenyl acetate (2) were heated in refluxing $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in the presence of catalyst $[\mathrm{Ru}]$-II ($10 \mathrm{~mol} \%$), 1,3-diene $\mathbf{3}$ and olefin $\mathbf{4}$ were obtained as an inseparable 4/1 mixture (Scheme 1). Indeed, the ester functionality in ethyl sorbate (1) does not sufficiently deactivate the α, β-double bond towards CM and thus when $[\mathrm{Ru}]-\mathrm{II}$ is used, both olefins of the diene react. By reducing the electron density at the α, β-double bond, as well as by increasing steric hindrance at the α-carbon, the CM is more chemoselective [10].

As the phosphine-free ruthenium complex [Ru]-III exhibits superior activity towards electron-deficient olefins compared to [Ru]-II [11], we initiated a systematic study designed to explore the construction of substituted 1,3dienes of type \mathbf{A} by performing CM reactions between methyl sorbate (5) and diverse olefin partners. Furthermore, we also investigated the corresponding dienic amides 14-16 in order to increase the chemoselectivity of the CM reaction, which would result in the selective formation of dienes of type \mathbf{A} and therefore would decrease the formation of olefins of type \mathbf{B} (Scheme 2).

[Mo]-I

[Ru]-I

Cy = Cyclohexyl

[Ru]-II

Mes $=$

Fig. 1. Commercially available metal carbenes used in RCM and CM reactions.

Scheme 1.

$5 \mathrm{X}=\mathrm{OMe}$
$14 \mathrm{X}=\mathrm{N}(\mathrm{Pr})_{2}$
$15 \mathrm{X}=\mathrm{N}(\mathrm{OMe}) \mathrm{Me}$

Scheme 2.

2. CM reactions with methyl sorbate (5)

When methyl sorbate (5) and oct-1-ene (5 equiv.) were stirred in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $\mathrm{rt}(c=0.2 \mathrm{M})$ for 48 h in the presence of $[\mathrm{Ru}]$-III ($5 \mathrm{~mol} \%$), the desired conjugated diene 6 was isolated as an inseparable mixture of $(E, E)-6$ and $(E, Z)-6$ stereoisomers in a $10 / 1$ ratio, accompanied by the corresponding mono-olefin of type $\mathbf{B}(\mathbf{A} / \mathbf{B}=2.5 / 1)$ with a global yield of 68% (Table 1, entry 1). In the case of the CM between methyl sorbate (5) and allyl trimethylsilane, dienic ester 7 was obtained as a mixture of stereoisomers $(E, E)-7$ and $(E, Z)-7$ in a $5 / 1$ ratio in addition to being contaminated with olefin of type $\mathbf{B}(\mathbf{A} / \mathbf{B}=6 / 1)$. When styrene was used, the conjugated diene $\mathbf{8}$ was formed in 35% yield with an excellent stereoselectivity as only the $(E, E)-\mathbf{8}$ isomer was isolated and no trace of the mono-olefin of type B was observed (Table 1, entry 3) [12].

Other olefins such as diethyl allylphosphonate, allyl bromide and N-allyl- p-toluenesulfonamide were also examined in the cross-metathesis reaction with methyl sorbate (5). In each case, the corresponding CM products were formed in moderate yields ($45-56 \%$) and were sometimes accompanied by the mono-olefin of type \mathbf{B} (Table 1, entries 4-6) [12].

The CM reaction with electron-deficient olefins such as methyl vinyl ketone and tert-butyl acrylate was also studied and, respectively, afforded the CM products $\mathbf{1 2}$ and $\mathbf{1 3}$ in poor yields (13-30\%) (Table 1, entries 7 and 8) [12].

3. CM with dienic amides

It was hypothesized the kinetics of the CM reaction with α, β-unsaturated amides was decreased by the chelation of the amide carbonyl group on the ruthenium center, and therefore, the efficiency of CM between α, β-unsaturated amides and olefins was affected by the substituents on the amide nitrogen [13]. Since the dienic esters did not show good chemoselectivity in CM, we turned our attention to dienic amides possessing more electron-rich carbonyl groups. In the case of (E, E)-dienic amides, easily accessible from sorbic acid [14], the chelation as well as the steric hindrance should avoid the CM with the α, β-unsaturation and the CM product at the γ, δ-position should be obtained selectively. In consequence, CM reactions between dienic amides $\mathbf{1 4} \mathbf{- 1 6}$ with a variety of electron-rich olefins were examined. The results are reported in Table 2.

${ }^{\mathrm{a}}$ Isolated yield for the mixture of \mathbf{A} and \mathbf{B}.
${ }^{\mathrm{b}}$ No trace of B was detected.
${ }^{\text {c }}$ A trienic compound was identified by GC/MS and NMR spectroscopy (see Section 5).

When the dienic N, N-diisopropylamide 14 was utilized in the CM reaction with oct-1-ene (5 equiv.) in the presence of $10 \mathrm{~mol} \%$ of [Ru]-III at rt for 24 h , the cross-metathesis product $\mathbf{1 7}$ was isolated in 36% yield in a $28 / 1(E, E) /(E, Z)$ ratio and no trace of mono-olefin of type \mathbf{B} was detected (Table 2, entry 1). Under the same conditions (oct-1-ene, 5 equiv.; [Ru]-III $10 \mathrm{~mol} \%, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 24 \mathrm{~h}$), the dienic Weinreb amide $\mathbf{1 5}$ was transformed into the dienic amide $\mathbf{1 8}[(E, E) /$ $(E, Z)=6 / 1]$ and into the corresponding mono-olefin of type B in 65% yield in a $3.5 / 1 \mathbf{A} / \mathbf{B}$ ratio (Table 2, entry 2). In order to decrease the formation of the mono-olefin of type \mathbf{B}, the amount of the [Ru]-III catalyst was decreased to $5 \mathrm{~mol} \%$. After 24 h , the dienic compound $\mathbf{1 8}$ and the mono-olefin of type \mathbf{B} were obtained in 60% yield in a $5 / 1$ ratio, and under these conditions the $(E, E)-\mathbf{1 8} /(E, Z)-\mathbf{1 8}$ ratio was 29/1 (Table 2 , entry 3). It is worth noting that, when the reaction was stopped after 1 h , the $(E, E)-\mathbf{1 8}$ and $(E, Z) \mathbf{- 1 8}$ ratio was increased to $49 / 1$, the isolated yield of 18 along with the corresponding mono-olefin of type B was 64%, and the \mathbf{A} / \mathbf{B} ratio was interestingly increased to $13 / 1$ (Table 2, entry 4). Thus, the increase of the $\mathbf{1 8 A} / \mathbf{1 8 B}$ ratio by decreasing the reaction time seems to indicate that compound $\mathbf{1 8 B}$ would be formed from the putative kinetic diene 18A, which would imply an insertion of the $[\mathrm{Ru}]$ in its α, β-double bond. To ver-
ify this hypothesis, compound 18A was treated with catalyst [Ru]-III ($5 \mathrm{~mol} \%$) in the presence of 5 equiv. of oct-1-ene (Scheme 3) [15]. After 4.5 h a negligible amount of monoolefin 18B was formed, the main product of the reaction being dimer \mathbf{C}. After 24 h , the amount of dimer \mathbf{C} increased without significant augmentation of the monoolefin 18B. However, at this stage, partial decomposition of 18A was ascertained. An additional amount of $5 \mathrm{~mol} \%$ of catalyst [Ru]-III was subsequently added and after 3 days of stirring diene $\mathbf{1 8 A}$ was almost totally decomposed and $\mathbf{1 8 B}$ was not formed anymore. So it seems that the decrease of the 18A/ 18B ratio by increasing the reaction time could be due to the decomposition of diene 18A. Furthermore, when 18A was stirred alone with catalyst [Ru]-III ($10 \mathrm{~mol} \%$) for 24 h , only traces of 18B were detected and no significant decomposition of 18A occurred. However, as the formation of dimer \mathbf{C} was noticed, it seems that catalyst [Ru]-III slowly inserts in the γ, δ-double bond of diene 18A. According to these results, it seems that the main active species is intermediate \mathbf{Z} which principally inserts in the γ, δ-double bond of amide $\mathbf{1 5}$ to give 18A, and to a minor extent in the α, β-double bond of 15 to give 18B. Finally, by decreasing the amount of catalyst [Ru$]$-III and the reaction time, the chemoselectivity can be improved.

When allyl bromide was involved in the CM reaction with Weinreb amide $\mathbf{1 5}$, for 14 h at rt , with $5 \mathrm{~mol} \%$ of [Ru$]$-III, the corresponding dienic amide 19 was formed in 39% yield with a very $\operatorname{good}(E, E) /(E, Z)$ ratio of $19 / 1$. Interestingly, no trace of mono-olefin of type \mathbf{B} was detected (Table 2, entry 5). In the case of the CM reaction between Weinreb amide 15 and (Z)-1,4-dichloro-2-butene the best results were obtained when the reaction was carried out with $5 \mathrm{~mol} \%$ of [Ru]-III, at rt for 30 min . Under these conditions, compound 20 was isolated in 59% yield $[(E, E) /(E, Z)=32 / 1]$ with a \mathbf{A} / \mathbf{B} ratio of $13 / 1$ (Table 2, entries 6 and 7). When amide $\mathbf{1 5}$ was involved in the cross-metathesis reaction with 1-acetoxy-but-3-ene, allyltrimethylsilane, and (Z)-1,4-diacetoxy-but-2-ene, the dienic cross-metathesis products were isolated as a mixture of (E, E) - and (E, Z)-stereoisomers. In the case of the CM between amide 15 and 1-acetoxy-but-3-ene (24 h , $10 \mathrm{~mol} \%[\mathrm{Ru}]-\mathrm{III})$, compound 21 was obtained along with the corresponding mono-olefin of type \mathbf{B} in a $24 / 1$ ratio and 46% overall yield. With allyltrimethylsilane, the cross-product 22 was isolated in 45% yield with a (E, E)22/(E, Z)-22 ratio of $4 / 1$ and 23 was formed in 42% yield with a $(E, E)-23 /(E, Z)-23$ ratio of $5 / 1$ when (Z)-1,4-diacet-oxy-but-2-ene was used in the CM reaction with amide $\mathbf{1 5}$ (Table 2, entries 8-10). Interestingly in these three latter cases, the formation of \mathbf{B} was probably kinetically decreased due to either a complexation of the ruthenium complex with participation of carbonyl group of the acetate as previously reported $[13,16]$ (Scheme 4; Table 2, entries 8 and 10) or by steric hindrance of the olefin partner (Table 2, entry 9).

In the case of more hindered dienic amides such as camphorsultamide 16, a good chemoselectivity was

Table 2
CM reactions between dienic amides 14-16 and a variety of cross-partners

14-16
Entrys)

Table 2 (continued)

Entry	Amide	R	t (h)	[Ru]-III mol \%	$\begin{aligned} & \text { diene } \mathbf{A} \\ & (E, E) /(E, Z) \end{aligned}$	Ratio A/B yield a
14	16		24	10		$\overline{57}^{c}$

${ }^{\text {a }}$ Global yield of the mixture of \mathbf{A} and \mathbf{B}.
${ }^{\mathrm{b}}(E, E)$ and (E, Z) isomers were separated.
${ }^{\mathrm{c}} \mathbf{B}$ was not detected by GC/MS and ${ }^{1} \mathrm{H}$ NMR.

Scheme 3.

Scheme 4.
observed as the desired cross-metathesis products of type A were isolated in moderate to good yields with no trace of mono-olefin of type B (Table 2, entries 11-14). Indeed, when a reaction mixture consisting of camphorsultamide 16, oct-1-ene (5 equiv.), and catalyst [Ru$]$-III ($10 \mathrm{~mol} \%$) was stirred in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at rt for 24 h , the cross-metathesis product 24 was isolated in 61% yield with a $10 / 1(E, E)$ $\mathbf{2 4} /(E, Z) \mathbf{- 2 4}$ ratio (Table 2 , entry 11). When the 1 -acet-oxy-but-3-ene and the (Z)-1,4-diacetoxybut-2-ene were involved in the CM reaction with camphorsultamide 16,
dienic amides 25 and 26 were isolated in similar yields (40%) with a $(E, E) /(E, Z)$ ratio of $9 / 1$ and $5 / 1$, respectively (Table 2, entries 12 and 13). Finally, when the (Z)-1,4-dichlorobut-2-ene was utilized in the CM with 16, diene 27 was isolated in 57% yield with an $(E, E)-\mathbf{2 7} /(E, Z)-27$ ratio of $16 / 1$ (Table 2, entry 14).

4. Conclusion

Cross-metathesis reactions between dienic amides and a variety of olefins turned out to be highly chemoselective at the γ, δ-double bond producing mostly the corresponding dienes of type \mathbf{A}. When a mixture of diene of type \mathbf{A} and mono-olefin of type \mathbf{B} is obtained, a decrease in the amount of catalyst and/or the reaction time can result in higher chemoselectivity in favor of \mathbf{A}. This method allows
the formation of functionalized dienic amides under mild conditions. As the Weinreb amides $\mathbf{1 8 - 2 3}$ can be transformed into aldehydes, ketones or carboxylic acids and as the optically active amides $\mathbf{2 4 - 2 7}$ can be involved in diastereoselective reactions, the CM reaction of dienic amides provides a valuable alternative for the preparation of useful intermediates.

5. Experimental

5.1. General comments

Flash chromatography was performed with Merck Geduran Si60 silica gel (40-63 UM). Infrared (IR) spectra were recorded on a Bruker TENSOR ${ }^{\text {TM }} 27$ (IRFT), wavenumbers are indicated in $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR spectra were recorded on a Bruker AVANCE 400 at 400 MHz and data are reported as follows: chemical shift in ppm from tetramethylsilane as an internal standard, multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet or overlap of non-equivalent resonances), integration. ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker AVANCE 400 at 100 MHz and data are reported as follows: chemical shift in ppm from tetramethylsilane with the solvent as an internal indicator $\left(\mathrm{CDCl}_{3} \delta: 77.0 \mathrm{ppm}\right)$. Mass spectra with electronic impact (MS-EI) were recorded from a Hew-lett-Packard tandem 5890 A GC (12 m capillary column) $5971 \mathrm{MS}(70 \mathrm{eV})$. High resolution mass spectra (HRMS) were performed by the Centre de Spectrochimie de l'Ecole Normale Supérieure Ulm (Paris).

5.2. General procedure for CM reactions between methyl sorbate and olefin cross-partners

To a solution of methyl sorbate $(150 \mathrm{mg}, 1.2 \mathrm{mmol}$, 1 equiv.) and olefin partner (6 mmol , 5 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($c=0.1-0.2 \mathrm{M}$) was added the Grubbs-Hoveyda catalyst [Ru]-III ($18.5 \mathrm{mg}, 0.030 \mathrm{mmol}, 0.025$ equiv.). After 24 h stirring, another portion of Grubbs-Hoveyda catalyst [Ru]-III was added (0.025 equiv.). After 24 h , silica was added to the reaction mixture and after evaporation of the solvent, the pad of silica was loaded on top of a silica gel column and a flash chromatography purification was achieved.

5.2.1. Methyl (2E,4E)-undeca-2,4-dienoate (6)

Purification on silica gel ($\mathrm{Et}_{2} \mathrm{O} /$ Petroleum Ether: $5 / 95$ to $10 / 90$) afforded $\mathbf{6}$ in 68% yield as a mixture of dienes (E, E) $\mathbf{6} /(E, Z)-6(10 / 1)$, contaminated by the mono-olefin of type B (A/B: 2.5/1).

IR (neat): 1724, $1656,1436 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta: 7.27(\mathrm{dd}, J=15.4,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.22-6.08(\mathrm{~m}$, $2 \mathrm{H}), 5.78(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 2.23-2.12$ $(\mathrm{m}, 2 \mathrm{H}), 1.50-1.37(\mathrm{~m}, 2 \mathrm{H}), 1.36-1.20(\mathrm{~m}, 6 \mathrm{H}), 0.88(\mathrm{t}$, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 167.2$, $149.9,140.4,138.7,120.6,51.3,32.1,31.4,29.6,28.7$,
22.4, 13.9; Mass (EI) $m / z: 196\left(\mathrm{M}^{+}\right.$, 18), $165\left(\mathrm{M}-\mathrm{OMe}^{+}\right.$, 16), 111 ($\mathrm{M}-\mathrm{Hex}^{+}$, 100), 81 (49).

5.2.2. Methyl (2E,4E)-6-(trimethylsilyl)hexa-2,4-dienoate (7)

Purification on silica gel $\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ Petroleum Ether: $5 / 95$ to $10 / 90$) afforded 7 in 71% yield as a mixture of (E, E)-7/ $(E, Z)-7(5 / 1)$, contaminated by mono-olefin of type $\mathbf{B}(\mathbf{A} /$ B : 6/1).

IR (neat): 1658, $1465,1453 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta: 7.27(\mathrm{dd}, J=15.6,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.18(\mathrm{dt}$, $J=15.0,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.04(\mathrm{dd}, J=15.6,11.0 \mathrm{~Hz}, 1 \mathrm{H})$, $5.71(\mathrm{~d}, \quad J=15.0 \mathrm{~Hz}, \quad 1 \mathrm{H}), 3.73(\mathrm{~s}, \quad 3 \mathrm{H}), 1.68(\mathrm{~d}$, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 0.02(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta: 168.1,145.9,143.0,126.9,116.5,51.3,25.2$, -1.9 (3C); Mass (EI) m/z: 198 (M^{+}, 9), 167 ($\mathrm{M}-\mathrm{OMe}^{+}$, 6), 73 ($\mathrm{TMS}^{+}, 100$), 66 (55).

5.2.3. Methyl (2E,4E)-5-phenylpenta-2,4-dienoate (8)

Purification on silica gel $\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ Petroleum Ether: $5 / 95$ to $10 / 90$) afforded (E, E)-8 in 35% yield, contaminated by methyl 7-phenylhexa-2,4,6-trienoate (A/triene: 4/1).

IR (neat): $1707,1624,1491,1433 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.50-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.39-7.28(\mathrm{~m}$, $3 \mathrm{H}), 6.83-6.95(\mathrm{~m}, 2 \mathrm{H}), 6.00(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.77$ (s, 3 H) ${ }^{13} \mathrm{C}^{\mathrm{C}} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 167.5,144.8$, $140.5,135.9,129.1,128.8$ (2C), 127.2 (2C), 126.1, 120.8, 51.5; Mass (EI) m/z: $188\left(\mathrm{M}^{+}, 25\right.$), $157\left(\mathrm{M}-\mathrm{OMe}^{+}, 18\right)$, $129\left(\mathrm{M}-\mathrm{CO}_{2} \mathrm{Me}^{+}, 100\right), 128$ (75), $77\left(\mathrm{Ph}^{+}, 8\right)$; HRMS (ESI): calculated for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 211.0739, found 211.0735 .

5.2.4. Methyl (2E,4E)-6-(diethoxyphosphoryl)hexa-2,4dienoate (9)

Excess of diethyl allylphosphonate was removed from the crude mixture under vacuum. Purification on silica gel ($\mathrm{AcOEt} /$ Petroleum Ether: $20 / 80$ to $100 / 0$) afforded 9 in 56% yield as a mixture of $(E, E) /(E, Z)$ stereoisomers in a $5.5 / 1$ ratio, along with mono-olefin of type $\mathbf{B}(\mathbf{A} / \mathbf{B}=$ $4 / 1$), and contaminated by traces of methyl 8 -(diethoxy-phosphoryl)octa-2,4,6-trienoate detectable by GC/MS.

IR (neat): 3467, 1716, 1644, 1617, $1436 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.27(\mathrm{dd}, J=15.5,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.32$ (ddd, $J=15.5,11.0,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.07(\mathrm{~m}, 1 \mathrm{H}), 5.86$ (dd, $J=15.5,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{~m}, 4 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 2.72$ (dd, $J=23.1,7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.32(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 167.2,143.7,132.6,131.7$, 120.7, 62.1, 51.5, 31.2, 16.4; Mass (EI) $m / z: 262\left(\mathrm{M}^{+}\right.$, 16), 247 ($\mathrm{M}-\mathrm{OMe}^{+}, 10$), 124 (100), 109 (32); HRMS $\left(\mathrm{CI}^{+}, \quad \mathrm{NH}_{3}\right)$: calculated for $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{O}_{5} \mathrm{P} \quad[\mathrm{M}+\mathrm{H}]^{+}$: 263.1048, found 263.1044.

5.2.5. Methyl (2E,4E)-6-bromohexa-2,4-dienoate (10)

Purification on silica gel (AcOEt/Petroleum Ether: 2/98 to $5 / 95$) afforded 10 in 48% yield as a mixture of $(E, E) /$ (E / Z) stereoisomers in a $32 / 1$ ratio, contaminated by methyl 8 -bromoocta-2,4,6-trienoate ($\mathbf{A} /$ Triene $=6 / 1$).

IR (neat): 1713, 1643, 1614, 1434, $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.19$ (dd, $J=15.4,11.0 \mathrm{~Hz}, 1 \mathrm{H}$), $6.32(\mathrm{dd}, \quad J=15.0, \quad 11.0 \mathrm{~Hz}, \quad 1 \mathrm{H}), \quad 6.18(\mathrm{dt}, \quad J=15.0$, $7.5 \mathrm{~Hz}, \quad 1 \mathrm{H}), \quad 5.87(\mathrm{~d}, \quad J=15.4 \mathrm{~Hz}, \quad 1 \mathrm{H}), \quad 3.97$ (d, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}) $\delta: 166.9,142.8,136.7,131.9,122.8,51.8,31.2$; Mass (EI) $m / z: 206\left(\mathrm{M}^{+} .{ }^{81} \mathrm{Br}, 15\right), 204\left(\mathrm{M}^{+} .{ }^{79} \mathrm{Br}, 15\right)$, $175\left(\mathrm{M}^{81} \mathrm{Br}-\mathrm{OMe}^{+}, 15\right), 173\left(\mathrm{M}^{79} \mathrm{Br}-\mathrm{OMe}^{+}, 15\right)$, 125 (100), 93 (57), 66 (50).

5.2.6. Methyl (2E,4E)-6-(4-methylphenylsulfonamido)-hexa-2,4-dienoate (11)

Purification on silica gel (AcOEt/Hexanes: 5/95 to 40/ 60) afforded 11 in 45% yield as a mixture of $(E, E) /(E, Z)$ stereoisomers in a $11.5 / 1$ ratio, contaminated by monoolefin of type $\mathbf{B}(\mathbf{A} / \mathbf{B}=4 / 1)$ and also by traces of p toluenesulfonamide.

IR (neat): $3238,1694,1650,1620,1597,1438 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.66(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H})$, $7.21(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.03(\mathrm{dd}, J=15.4,11.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.12(\mathrm{dd}, \quad J=15.2, \quad 11.1 \mathrm{~Hz}, \quad 1 \mathrm{H}), 5.82(\mathrm{dt}, \quad J=15.2$, $5.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.68(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.36(\mathrm{br} \mathrm{s}, \mathrm{NH})$, $3.63(\mathrm{~s}, 3 \mathrm{H}), 3.58(\mathrm{~m}, 2 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 167.3,143.5,143.3,139.4,136.9$, 129.9 (2C), 127.1 (2C), 126.3, 121.4, 51.6, 44.6, 21.5; Mass (EI) $m / z: 295\left(\mathrm{M}^{+}, 1\right), 264\left(\mathrm{M}-\mathrm{OMe}^{+}, 5\right), 155(19), 140$ (44), 111 (100), 108 (84), 91 (77), 80 (61); HRMS (CI^{+}, NH_{3}): calculated for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S} \quad\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$: 313.1222, found 313.1216.

5.2.7. Methyl (2E,4E)-6-oxohepta-2,4-dienoate (12)

Purification on silica gel (AcOEt/Hexanes: 3/97 to 20/80) afforded $(E, E) \mathbf{- 1 2}$ as a single stereoisomer in 13% yield, contaminated by dimethyl octa-2,4,6-trienedioate (A/Triene: $6 / 1$).

IR (neat): 1717, 1660, 1627, 1599, $1436 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.27(\mathrm{dd}, J=15.4,11.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.07$ (dd, $J=15.5,11.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.18$ (d, $J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 2.26(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 197.8,166.2,141.5,139.1,136.3$, 128.6, 52.0, 27.9; Mass (EI) m/z: 154 (M^{+}, 46), 139 $\left(\mathrm{M}-\mathrm{Me}^{+}, 100\right), 123\left(\mathrm{M}-\mathrm{OMe}^{+}, 20\right), 111$ (76), 95 (37).

5.2.8. tert-Butyl methyl (2E,4E)-hexa-2,4-dienoate (13)

Purification on silica gel (AcOEt/Hexanes: $0 / 100$ to $3 / 97$) afforded 13 in 30% yield as a mixture of $(E, E) /$ (E / Z) stereoisomers in a $50 / 1$ ratio, contaminated by methyl 7-phenyl-hexa-2,4,6-trienoate (A/Triene: 9/1).

IR (neat): $1699,1609 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.24(\mathrm{dd}, J=15.0,11.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{dd}, J=14.8$, $11.5 \mathrm{~Hz}, \quad 1 \mathrm{H}), \quad 6.10(\mathrm{~d}, \quad J=15.0 \mathrm{~Hz}, \quad 1 \mathrm{H}), \quad 6.06(\mathrm{~d}$, $J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 166.5,165.2,141.3,139.7,130.6$, 127.3, 81.2, 51.9, 28.1 (3C); Mass (EI) $m / z: 213\left(\mathrm{M}+\mathrm{H}^{+}\right.$, 1), $212\left(\mathrm{M}^{+} \cdot, 1\right), 181\left(\mathrm{M}-\mathrm{OMe}^{+}, 20\right), 157$ (100), 139 $\left(\mathrm{M}-\mathrm{O} t \mathrm{Bu}^{+}, 77\right), 111(54), 57$ (67); HRMS ($\mathrm{CI}^{+}, \mathrm{NH}_{3}$): calculated for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$: 213.1127, found 213.1121.

5.3. General procedure for CM reactions with dienic amides

To a solution of sorbamide ($1 \mathrm{mmol}, 1$ equiv.) and the olefin partner ($5 \mathrm{mmol}, 5$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(c=0.1-$ 0.2 M) was added Grubbs-Hoveyda catalyst [Ru]-III ($64 \mathrm{mg}, 0.10 \mathrm{mmol}, 0.1$ equiv.). The solution was stirred for 24 h and silica was then added to the reaction mixture. After evaporation of the solvent, the pad of silica was loaded on top of a silica gel column and a flash chromatography purification was achieved.

5.3.1. (2E,4E)-N,N-Diisopropylundeca-2,4-dienamide (17)

Purification on silica gel (AcOEt/Petroleum Ether: 15/85 to $20 / 80$) afforded 17 in 36% yield as a mixture of the dienes $(E, E)-17 /(E, Z)-17(28 / 1)$.

IR (neat): $1659,1630,1606,1460,1411,1376 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.19(\mathrm{dd}, J=14.6,10.5 \mathrm{~Hz}$, $1 \mathrm{H}), \quad 6.09$ (d, $J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.07$ (dd, $J=15.2$, $10.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.02(\mathrm{dt}, J=15.2,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{~m}$, $1 \mathrm{H}), 3.79(\mathrm{~m}, 1 \mathrm{H}), 2.14\left(\mathrm{q}_{\text {app }}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}\right), 1.50-1.10$ $(\mathrm{m}, 20 \mathrm{H}), 0.88(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, CDCl_{3}) $\delta: 166.5,142.1,141.7,128.9,121.3,47.6$ (br), 45.8 (br), 32.9, 31.6, 28.8 (2C), 22.6, 21.5 (2C, br), 20.8 (2C, br), 14.1; Mass (EI) m/z: $265\left(\mathrm{M}^{+}\right.$, 36), $250\left(\mathrm{M}-\mathrm{Me}^{+}\right.$, 13), $222\left(\mathrm{M}-\mathrm{Pr}^{+}, \quad 26\right), \quad 208\left(\mathrm{M}-\mathrm{Bu}^{+}\right.$22), 194 ($\mathrm{M}-\mathrm{Pent}^{+}, 9$), $180\left(\mathrm{M}-\mathrm{Hex}^{+}, 36\right), 165\left(\mathrm{M}-\mathrm{NiPr}_{2}^{+}\right.$, 100), $100\left({\mathrm{~N} i \mathrm{Pr}_{2}^{+}}^{2}\right.$ 54), 95 (95), 81 (61).

5.3.2. (2E,4E)-N-Methoxy,N-methylundeca-2,4-dienamide (18)

Only $5 \mathrm{~mol} \%$ of catalyst [Ru]-III were used and the reaction was stopped after 1 h . Purification on silica gel (AcOEt/Petroleum Ether: 20/80), afforded 18 in 64% yield as a mixture of the dienes $(E, E)-\mathbf{1 8} /(E, Z)-\mathbf{1 8}(49 / 1)$, contaminated by mono-olefin of type B (A/B: 13/1). When the reaction was stirred for 24 h , a $5 / 1 \mathbf{A} / \mathbf{B}$ ratio was observed.

IR (neat): $1659,1630,1606,1460,1411,1376 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.31(\mathrm{dd}, J=15.2,10.6 \mathrm{~Hz}$, $1 \mathrm{H}), \quad 6.37(\mathrm{~d}, \quad J=15.2 \mathrm{~Hz}, \quad 1 \mathrm{H}), \quad 6.23(\mathrm{dd}, \quad J=15.1$, $10.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.12(\mathrm{dt}, J=15.1,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~s}$, $3 \mathrm{H}), 3.25(\mathrm{~s}, 3 \mathrm{H}), 2.16\left(\mathrm{q}_{\text {app }}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}\right), 1.50-1.37$ $(\mathrm{m}, 2 \mathrm{H}), 1.36-1.20(\mathrm{~m}, 6 \mathrm{H}), 0.88(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 167.5,144.1,144.0,128.7$, 116.8, 61.7, 33.0, 32.5, 31.6, 28.9, 28.7, 22.6, 14.1; Mass (EI) $m / z: 225\left(\mathrm{M}^{+}, 2\right), 165\left(\mathrm{M}^{+}-\mathrm{N}(\mathrm{OMe}) \mathrm{Me}, 100\right), 81$ (85); HRMS (ESI): calculated for $\mathrm{C}_{13} \mathrm{H}_{23} \mathrm{NO}_{2} \mathrm{Na}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 248.1634$, found 248.1626

5.3.3. (2E,4E)-6-Bromo-N-methoxy,N-methylhexa-2,4dienamide (19)

Purification on silica gel (AcOEt/Petroleum Ether: 10/90 to $20 / 80$) afforded 19 in 39% yield as a mixture of (E, E) / (E, Z) stereoisomers in a $19 / 1$ ratio.

IR (neat): $1655,1625,1605,1414,1380 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.30(\mathrm{dd}, J=15.2,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.54$ $(\mathrm{d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{dd}, J=15.0,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.24$
(dt, $J=15.0,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~s}$, $3 \mathrm{H}), 3.26(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 166.5$, 141.3, 135.8, 132.7, 121.0, 61.9, 32.4, 31.7; Mass (EI) m / z : $235\left(\mathrm{M}^{+.}{ }^{81} \mathrm{Br}, 7\right), 233\left(\mathrm{M}^{+.}{ }^{79} \mathrm{Br}, 8\right), 176(7), 175\left(\mathrm{M}^{+}\right.$. $\left.{ }^{81} \mathrm{Br}-\mathrm{N}(\mathrm{OMe}) \mathrm{Me}, \quad 99\right), \quad 173 \quad\left(\mathrm{M}^{+} .{ }^{79} \mathrm{Br}-\mathrm{N}(\mathrm{OMe}) \mathrm{Me}\right.$, 100), 154 (64), 94 (63), 66 (79); HRMS ($\mathrm{CI}^{+}, \mathrm{NH}_{3}$): calculated for $\mathrm{C}_{8} \mathrm{H}_{13}{ }^{79} \mathrm{BrNO}_{2} \quad[\mathrm{M}+\mathrm{H}]^{+}$: 234.0130, found 234.0134, calculated for $\mathrm{C}_{8} \mathrm{H}_{13}{ }^{81} \mathrm{BrNO}_{2} \quad[\mathrm{M}+\mathrm{H}]^{+}$: 236.0110, found 236.0114.

5.3.4. (2E,4E)-N-Methoxy,N-methyl-6-chlorohexa-2,4dienamide (20)

Only $5 \mathrm{~mol} \%$ of catalyst [Ru]-III were used and the reaction was stopped after 30 min . Purification on silica gel (AcOEt/Petroleum Ether: 20/80) afforded 20 in 59% yield as a mixture of the dienes $(E, E)-\mathbf{2 0} /(E, Z)-\mathbf{2 0}(32 / 1)$, contaminated by the mono-olefin of type $\mathbf{B}(\mathbf{A} / \mathbf{B}: 13 / 1)$. When the reaction was stirred for 24 h with $10 \mathrm{~mol} \%$ of catalyst [Ru]-III a $2 / 1 \mathbf{A} / \mathbf{B}$ ratio was observed.

IR (neat): $1656,1628,1606,1413,1378 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.26(\mathrm{dd}, J=15.2,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.49$ $(\mathrm{d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{dd}, J=15.0,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.12$ (dt, $J=15.0,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{dd}, J=6.9,1.0 \mathrm{~Hz}, 2 \mathrm{H})$, $3.66(\mathrm{~s}, 3 \mathrm{H}), 3.21(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 166.4,141.3,135.4,131.9,120.7,61.7,44.0,32.3$; Mass (EI) $m / z: 191\left(\mathrm{M}^{+} \cdot{ }^{37} \mathrm{Cl}, 2\right), 189\left(\mathrm{M}^{+} \cdot{ }^{35} \mathrm{Cl}, 6\right), 154$ ($\mathrm{M}-\mathrm{Cl}^{+}, 20$), $131\left(\mathrm{M}^{+} \cdot{ }^{37} \mathrm{Cl}-\mathrm{N}(\mathrm{OMe}) \mathrm{Me}, 34\right), 129$ ($\left.\mathrm{M}^{+} .{ }^{35} \mathrm{Cl}-\mathrm{N}(\mathrm{OMe}) \mathrm{Me}, 100\right)$; HRMS (ESI): calculated for $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{NO}_{2}{ }^{35} \mathrm{Cl}[\mathrm{M}+\mathrm{H}]^{+}$: 190.0638 , found 190.0635 .
5.3.5. (2E,4E)-N-Methoxy,N-methyl-7-acetoxyhepta-2,4dienamide (21)

Purification on silica gel (AcOEt/Petroleum Ether: 35/ 65), afforded 21 in 46% yield as a mixture of the dienes $(E, E) \mathbf{- 2 1} /(E, Z) \mathbf{- 2 1}(7 / 1)$, contaminated by mono-olefin of type B (A/B: 24/1).

IR (neat): $1735,1655,1628,1605,1414,1379 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.24(\mathrm{dd}, J=15.2,11.0 \mathrm{~Hz}$, $1 \mathrm{H}), \quad 6.38(\mathrm{~d}, \quad J=15.2 \mathrm{~Hz}, \quad 1 \mathrm{H}), \quad 6.26(\mathrm{dd}, \quad J=15.3$, $11.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.02(\mathrm{dt}, J=15.3,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{t}$, $J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.20(\mathrm{~s}, 3 \mathrm{H}), 2.46\left(\mathrm{q}_{\text {app }}\right.$, $J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}) $\delta: 170.7,166.8,142.7,137.6,130.8,118.0,62.8$, 61.5, 32.1, 31.9, 20.6; Mass (EI) m/z: 227 ($\mathrm{M}^{+} \cdot 8$), 184 ($\mathrm{M}-\mathrm{Ac}^{+}, 1$), $167\left(\mathrm{M}^{+}-\mathrm{N}(\mathrm{OMe}) \mathrm{Me}, 15\right), 107$ (100); HRMS (ESI): calculated for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{NO}_{4} \quad[\mathrm{M}+\mathrm{H}]^{+}$: 228.1240, found 228.1236 .
5.3.6. (2E,4E)-N-Methoxy,N-methyl-6-(trimethylsilyl)-hexa-2,4-dienamide (22)

Purification on silica gel (AcOEt/Petroleum Ether: 20/ 80) afforded (E, E) - $\mathbf{2 2}$ in 37% yield and (E, Z) - $\mathbf{2 2}$ in 8% yield $((E, E) /(E, Z): 4 / 1)$.

IR (neat): 1664, 1640, 1621, 1462, 1416, $1381 \mathrm{~cm}^{-1}$; Major isomer (E, E)-22: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$: 7.31 (dd, $J=15.1,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.29(\mathrm{~d}, J=15.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.17(\mathrm{dt}, J=14.9,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.09(\mathrm{dd}, J=14.9$,
$10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~s}, ~ 3 \mathrm{H}), 3.24(\mathrm{~s}, ~ 3 \mathrm{H}), 1.67(\mathrm{~d}$, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 0.02(\mathrm{~s}, ~ 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 167.9,144.5,142.0,127.4,114.7,61.7,32.5$, 25.1, -1.9 (3C); Minor isomer (E, Z)-22: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.31(\mathrm{dd}, J=15.0,11.6 \mathrm{~Hz}, 1 \mathrm{H})$, $6.42(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.12(\mathrm{dd}, J=11.6,10.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.09(\mathrm{dt}, J=10.8,9.2,1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.25(\mathrm{~s}$, $3 \mathrm{H}), 1.85(\mathrm{dd}, J=9.2,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 0.02(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 167.7, 138.7, 138.3, 124.7, 117.3, 61.7, 32.4, 21.0, -1.8 (3C); Mass (EI) m/z: 227 $\left(\mathrm{M}^{+}, 7\right), 212\left(\mathrm{M}-\mathrm{Me}^{+}, 2\right), 196\left(\mathrm{M}-\mathrm{OMe}^{+}, 2\right), 180(1)$, 167 ($\left.\mathrm{M}^{+}-\mathrm{N}(\mathrm{OMe}) \mathrm{Me}, ~ 34\right), 151$ (44), 109 (2), 73 (TMS ${ }^{+}, 100$), 66 (9), 59 (5); HRMS (ESI): calculated for $\mathrm{C}_{11} \mathrm{H}_{21} \mathrm{NO}_{2} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}: 250.1247$, found 250.1239.

5.3.7. (2E,4E)-N-Methoxy,N-methyl-6-acetoxyhexa-2,4dienamide (23)

Purification on silica gel (AcOEt/Petroleum Ether: 35/ 65) afforded 23 in 42% yield as a mixture of the dienes $(E, E)-23 /(E, Z)-23$ (5/1).

IR (neat): $1737,1659,1632,1607,1417,1380 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.29$ (dd, $J=15.2,11.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.51(\mathrm{~d}, \quad J=15.2 \mathrm{~Hz}, \quad 1 \mathrm{H}), 6.24(\mathrm{dd}, \quad J=15.3$, $11.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.11(\mathrm{dt}, J=15.3,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{~d}$, $J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.24(\mathrm{~s}, 3 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.2,166.3,141.5$, 134.1, 130.8, 119.9, 63.5, 61.5, 32.0, 20.5; Mass (EI) m / z : $213\left(\mathrm{M}^{+} \cdot, 4\right), 153\left(\mathrm{M}^{+} \cdot \mathrm{N}(\mathrm{OMe}) \mathrm{Me}, 20\right)$, 111 (100); HRMS (ESI): calculated for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{NO}_{4}\left[\mathrm{M}+\mathrm{H}^{+}\right]$: 214.1079, found 214.1055.

5.3.8. $N-[(2 E, 4 E)-U n d e c a-2,4-d i e n o y l]-(S)-2,10-$ camphorsultam (24)

Purification on silica gel (AcOEt/Petroleum Ether: 10/ 90) afforded 24 in 61% yield as a mixture of the dienes $(E, E)-24 /(E, Z)-24(10 / 1)$.
M.p. $84-86^{\circ} \mathrm{C} ;[\alpha]_{D}^{20}+64.4\left(c \quad 0.56, \mathrm{CHCl}_{3}\right)$; IR (neat): 1682, 1638, 1607, 1456, 1412, 1392, 1328, $1271 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35(\mathrm{dd}, J=14.8,10.0 \mathrm{~Hz}$, $1 \mathrm{H}), \quad 6.51(\mathrm{~d}, \quad J=14.8 \mathrm{~Hz}, \quad 1 \mathrm{H}), \quad 6.24(\mathrm{dd}, \quad J=15.2$, $10.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.17(\mathrm{dt}, J=15.2,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{dd}$, $J=7.5,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{~d}$, $J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.16\left(\mathrm{q}_{\text {app }}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.16-2.04$ $(\mathrm{m}, 2 \mathrm{H}), 1.96-1.84(\mathrm{~m}, 3 \mathrm{H}), 1.60-2.40(\mathrm{~m}, 10 \mathrm{H}), 1.16(\mathrm{~s}$, $3 \mathrm{H}), 0.96(\mathrm{~s}, 3 \mathrm{H}), 0.85(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 164.5,146.6,146.1,128.6,118.3,65.1,53.1$, $48.4,47.7,44.6,38.5,33.0,32.8,31.6,28.8,28.5,26.5$, $22.5,20.8,19.8,14.0$; Mass (EI) $m / z: 379\left(\mathrm{M}^{+}, 12\right), 294$ ($\mathrm{M}-\mathrm{Hex}^{+}, 28$), 165 (M - CO - Sultam ${ }^{+}$, 100); HRMS $\left(\mathrm{CI}^{+}, \quad \mathrm{CH}_{4}\right)$: calculated for $\mathrm{C}_{21} \mathrm{H}_{34} \mathrm{NSO}_{3} \quad[\mathrm{M}+\mathrm{H}]^{+}$: 380.2259 , found 380.2253 .
5.3.9. N-[(2E,4E)-7-Acetoxyhepta-2,4-dienoyl]-(S)-2,10camphorsultam (25)

Purification on silica gel (AcOEt/Petroleum Ether: 15/ 85) afforded 25 in 40% yield as a mixture of the dienes $(E, E)-\mathbf{2 5} /(E, Z)-25(9 / 1)$.
$[\alpha]_{D}^{20}+82.1\left(\mathrm{c} 0.39, \mathrm{CHCl}_{3}\right)$; IR (neat): $1735,1676,1634$, 1606, 1456, 1413, 1326, $1271 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.29(\mathrm{dd}, \quad J=14.8,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{~d}$, $J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.5(\mathrm{dd}, J=15.2,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.15$ (dt, $J=15.2,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.88$ (dd, $J=7.4,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.47$ (d, $J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.39$ $(\mathrm{d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.45\left(\mathrm{q}_{\text {app }}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.12-$ $2.02(\mathrm{~m}, 2 \mathrm{H}), 1.98(\mathrm{~s}, 3 \mathrm{H}) 1.92-1.77(\mathrm{~m}, 3 \mathrm{H}), 1.37(\mathrm{~m}$, $1 \mathrm{H}), 1.30(\mathrm{~m}, 1 \mathrm{H}), 1.11(\mathrm{~s}, 3 \mathrm{H}), 0.92(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.3,163.8,143.7,136.6,130.1$, $121.4,65.0,63.4,52.9,48.3,47.6,44.5,38.3,32.6,32.1$, 26.3, 20.8, 20.7, 19.7; Mass (EI) m/z: $381\left(\mathrm{M}^{+} \cdot 1\right), 338$ $\left(\mathrm{M}-\mathrm{Ac}^{+}, 1\right), 135\left(\mathrm{M}-\mathrm{AcOH}-\right.$ Sultam $\left.^{+}, \quad 11\right), 107$ (100); HRMS $\left(\mathrm{CI}^{+}, \mathrm{CH}_{4}\right)$: calculated for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{NO}_{5} \mathrm{~S}$ $[\mathrm{M}+\mathrm{H}]^{+}: 382.1688$, found 382.1682.

5.3.10. $N-[(2 E, 4 E)-6-A c e t o x y h e x a-2,4-d i e n o y l]-(S)-2,10-$

 camphorsultam (26)Purification on silica gel (AcOEt/Petroleum Ether: 15/ 85) afforded 26 in 40% yield as a mixture of the dienes $(E, E)-\mathbf{2 6} /(E, Z)-26(5 / 1)$.
$[\alpha]_{D}^{20}+44.9\left(\mathrm{c} 0.90, \mathrm{CHCl}_{3}\right) ;$ IR (neat, cm^{-1}): 1738, 1676, 1639, 1609, 1455, 1413, 1374, 1327, $1270 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.32(\mathrm{dd}, J=14.8,11.1 \mathrm{~Hz}, 1 \mathrm{H})$, $6.62(\mathrm{~d}, ~ J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.43(\mathrm{dd}, J=15.3,11.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.15(\mathrm{dt}, J=15.3,5.50 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{~d}, J=5.5 \mathrm{~Hz}$, $2 \mathrm{H}), 3.91$ (dd, $J=7.4,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{~d}, J=13.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.42(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.16-2.04(\mathrm{~m}, 2 \mathrm{H}), 2.06$ $(\mathrm{s}, 3 \mathrm{H}) 1.96-1.80(\mathrm{~m}, 3 \mathrm{H}), 1.40(\mathrm{~m}, 1 \mathrm{H}), 1.33(\mathrm{~m}, 1 \mathrm{H})$, $1.13(\mathrm{~s}, 3 \mathrm{H}), 0.94(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $170.3,163.8,143.7,136.6,130.1,121.4,65.0,63.4,52.9$, 48.3, 47.6, 44.5, 38.3, 32.6, 26.3, 20.7 (2C), 19.7; HRMS $\left(\mathrm{CI}^{+}, \quad \mathrm{CH}_{4}\right)$: calculated for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{NO}_{5} \mathrm{~S} \quad[\mathrm{M}+\mathrm{H}]^{+}$: 368.1532 , found 368.1536 .

5.3.11. N-[(2E,4E)-6-Chloro-hexa-2,4-dienoyl]-(S)-2,10camphorsultam (27)

Purification on silica gel (AcOEt/Petroleum Ether: 10/ 90) afforded 27 in 57% yield as a mixture of the dienes $(E, E)-27 /(E, Z)-27(16 / 1)$.
$[\alpha]_{D}^{20}+81.1\left(\mathrm{c} 0.54, \mathrm{CHCl}_{3}\right)$; IR (neat): $1675,1634,1607$, $1456,1413,1373,1328,1271 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.34(\mathrm{dd}, \quad J=14.8,11.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~d}$, $J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.17(\mathrm{dd}, J=14.9,11.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.09$ (dt, $J=14.9,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.92$ $(\mathrm{dd}, J=7.4,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.43$ (d, $J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.16-2.04(\mathrm{~m}, 2 \mathrm{H}), 1.96-1.80(\mathrm{~m}$, $3 \mathrm{H}), 1.41(\mathrm{~m}, 1 \mathrm{H}), 1.34(\mathrm{~m}, 1 \mathrm{H}), 1.15(\mathrm{~s}, 3 \mathrm{H}), 0.95(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 163.7,143.2,137.5$, $131.3,122.1,65.0,53.0,48.4,47.7,44.6,43.7,38.3,32.7$, 26.4, 20.7, 19.8;. HRMS ($\mathrm{CI}^{+}, \mathrm{CH}_{4}$): calculated for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{~S}^{35} \mathrm{Cl}[\mathrm{M}+\mathrm{H}]^{+}: 344.1087$, found 344.1093.

Acknowledgements

One of us (L.F.) thanks the MRES for a grant. D.A. thanks the Société de Chimie Thérapeutique/SERVIER
for financial support of this work. We also wish to acknowledge Dr. Fisher and Dr. Trimmer from Materia (USA) for a generous gift of the Grubbs-Hoveyda catalyst.

References

[1] (a) For recent reviews, see: M. Schuster, S. Blechert, Angew. Chem. Int. Ed. Engl. 36 (1997) 2067;
(b) R.H. Grubbs, S. Chang, Tetrahedron 54 (1998) 4413;
(c) S.K. Armstrong, J. Chem. Soc. Perkin Trans. 1 (1998) 371;
(d) A.J. Phillips, A.D. Abell, Aldrichimica Acta 32 (1999) 75;
(e) S. Blechert, Pure Appl. Chem. 71 (1999) 1393;
(f) A. Fürstner, Angew. Chem. Int. Ed. 39 (2000) 3013;
(g) T.M. Trnka, R.H. Grubbs, Acc. Chem. Res. 34 (2001) 18;
(h) R.H. Grubbs, Handbook of Metathesis, Wiley-VCH, Weinheim, 2003.
[2] For a recent review on Olefin cross-metathesis, see: S.J. Connon, S. Blechert, Angew. Chem. Int. Ed. 42 (2003) 1900.
[3] (a) R.R. Schrock, J.S. Murdzek, G.C. Bazan, J. Robbins, M. Dimare, M. O'Regan, J. Am. Chem. Soc. 112 (1990) 3875;
(b) G.C. Bazan, E. Khosravi, R.R. Schrock, W.J. Feast, V.C. Gibson, M.B. O'Regan, J.K. Thomas, W.M. Davis, J. Am. Chem. Soc. 112 (1990) 8378;
(c) G.C. Bazan, J.H. Oskam, H.N. Cho, L.Y. Park, R.R. Schrock, J. Am. Chem. Soc. 113 (1991) 6899.
[4] P. Schwab, M.B. France, J.W. Ziller, R.H. Grubbs, Angew. Chem. Int. Ed. Engl. 34 (1995) 2039.
[5] M. Scholl, S. Ding, C.W. Lee, R.H. Grubbs, Org. Lett. 1 (1999) 953.
[6] J.S. Kingbury, J.P.A. Harrity, P.J. Bonitatebus Jr., A.H. Hoveyda, J. Am. Chem. Soc. 122 (2000) 8168.
[7] K.C. Nicolaou, P.G. Bulger, D. Sarlah, Angew. Chem. Int. Ed. 44 (2005) 4490, and references therein.
[8] (a) For examples, see: K.C. Nicolaou, M.H.D. Posterma, E.W. Yue, A. Nadin, J. Am. Chem. Soc. 118 (1996) 10335;
(b) L.M.M. Cabrejas, S. Rohrbach, D. Wagner, J. Kallen, G. Zenke, J. Wagner, Angew. Chem. Int. Ed. 38 (1999) 2443;
(c) C.A. Dvorak, W.D. Schmitz, D.J. Poon, D.C. Pryde, J.P. Lawson, R.A. Amos, A.I. Meyers, Angew. Chem. Int. Ed. 39 (2000) 1664; (d) R.M. Garbaccio, S.J. Stachel, D.K. Baeschlin, S.J. Danishefsky, J. Am. Chem. Soc. 123 (2001) 10903;
(e) K. Basu, J.C. Eppich, L.A. Paquette, Adv. Synth. Catal. 344 (2002) 615;
(f) K. Biswas, H. Lin, J.T. Njardarson, M.D. Chappell, T.-C. Chou, Y. Guan, W.P. Tong, L. He, S.B. Horwitz, S.J. Danishefsky, J. Am. Chem. Soc. 124 (2002) 9825;
(g) K. Yamamoto, K. Biswas, C. Gaul, S.J. Danishefsky, Tetrahedron Lett. 44 (2003) 3297.
[9] (a) S. Randl, N. Lucas, S.J. Connon, S. Blechert, Adv. Synth. Catal. 344 (2002) 631;
(b) R.R. Cesati III, J. de Armas, A.H. Hoveyda, J. Am. Chem. Soc. 126 (2003) 96;
(c) H.Y. Lee, B.G. Kim, M.L. Snapper, Org. Lett. 5 (2003) 1855;
(d) F. Royer, C. Vilain, L. Elkä̈m, L. Grimaud, Org. Lett. 5 (2003) 2007;
(e) H.-Y. Lee, H.Y. Kim, H. Tae, B.G. Kim, J. Lee, Org. Lett. 5 (2003) 3439;
(f) P. Dewi, S. Randl, S. Blechert, Tetrahedron Lett. 46 (2005) 577.
[10] T.W. Funk, J. Efskind, R.H. Grubbs, Org. Lett. 7 (2005) 187.
[11] (a) J. Cossy, S. BouzBouz, A.H. Hoveyda, J. Organomet. Chem. 634 (2001) 216;
(b) S. Randle, S. Gessler, H. Wakamatsu, S. Blechert, Chem. Commun. (2001) 1692;
(c) S. Randle, S.J. Connon, S. Blechert, Chem. Commun. (2001) 1796.
[12] Traces of a trienic compound were observed by GC/MS and ${ }^{1} \mathrm{H}$ NMR along with dienic esters 8, 9, 10, 12 and 13 (see experimental section).
[13] T.-L. Choi, A.K. Chatterjee, R.H. Grubbs, Angew. Chem. Int. Ed. 40 (2001) 1277.
[14] (a) T.R. Hoye, A.S. Magee, W.S. Trumper, Synth. Commun. (1983) 183;
(b) S.V. Ley, L.R. Cox, G. Meek, K.-H. Metten, C. Piqué, J.M. Worrall, J. Chem. Soc. Perkin Trans. 1 (1997) 3299;
(c) W. Oppolzer, G. Poli, A.J. Kingma, C. Starkemann, G. Bernardinelli, Helv. Chim. Acta 70 (1987) 2201.
[15] The experiences were carried out in the presence of a known quantity of dodecane as an internal standard of calibration and were followed by GC/MS.
[16] (a) A. Fürstner, K. Langemann, J. Am. Chem. Soc. 119 (1997) 9130;
(b) A.K. Ghosh, J. Cappiello, D. Shin, Tetrahedron Lett. 39 (1998) 4651.

[^0]: * Corresponding author. Tel.: +33 1407944 29; fax: +33 140794660 .

 E-mail address: janine.cossy@espci.fr (J. Cossy).

